

tous les photons comptent

REPENSER L'EMCCD

UN NOUVEAU STANDARD
POUR L'IMAGERIE À FAIBLE
FLUX

RAPPORT SIGNAL/BRUIT (RSB) EXCEPTIONNEL DÛ À

Une électronique brevetée éliminant le bruit des caméras EMCCD pour une meilleure imagerie en comptage de photons

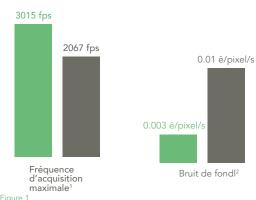
Un bruit de fond plus faible et un gain de multiplication d'électrons (EM) plus élevé, jusqu'à 5000, en mode d'opération non-inversé (NIMO) pour des résultats optimaux dans des conditions d'imagerie à faible flux

Scellé avec refroidissement entièrement liquide pour empêcher les flux d'air indésirables tout en éliminant les gradients thermiques.

Fonctionne à des fréquences d'images plus élevées pour devancer les changements atmosphériques avec une résolution essentielle à la détection du front d'onde au plan focal

ACQUISITIONS PLUS RAPIDES grâce à des fréquences d'acquisition pouvant atteindre 3015 images par seconde en plein format et une latence du premier pixel de 35.5 µs à une vitessede lecture de 30 MHz avec UNE SENSIBILITE OPTIMALE permettant une imagerie à faible flux très efficace

QUALITÉ D'IMAGE SUPÉRIEURE grâce à une efficacité de transfert de charge accrue.


AUCUN ALGORITHME DE FILTRAGE DU BRUIT la quantité de bruit générée est simplement plus faible, éliminant ainsi le risque de supprimer de véritables photoélectrons.

COMPARAISON DES PERFORMANCES

- HNü 240 (Toutes les spécifications sont mesurées en IMO)
- Meilleure caméra compétitrice EMCCD

(Les autres fabricants ne précisent pas le mode d'opération — IMO ou NIMO — utilisé pour mesurer chaque spécification. Ce sont deux modes de fonctionnement EMCCD mutuellement exclusifs dont les avantages ne peuvent pas être combinés.)

3x moins de bruit et presque 50% plus rapide

Les bénéfices de la Hnü 240 en Comptage de Photons

h ni 240 Fiche Technique

INTÉGRATION SIMPLE DANS UNE GRANDE VARIÉTÉ DE SYSTÈMES LOGICIELS

Nüvü Camēras offre le plus haut standard de la technologie EMCCD dans une caméra compacte avec refroidissement thermoélectrique. Initialement conçue pour l'exploration spatiale, où les requis d'instrumentation stimulent l'innovation, cette technologie a depuis été optimisée pour un large éventail d'applications. Facile à utiliser, la HNü présente de nombreux avantages qui permettent d'accélérer les découvertes et les publications.

- Logiciel NüPixel de contrôle, d'acquisition et d'analyse
- > Trousse de développement logiciel (SDK) pour une programmation personnalisée
- › Compatibilité Windows & Linux
- > Service à la clientèle professionnel dans le monde entier

Services de consultation disponibles sur demande.

h-ni 240

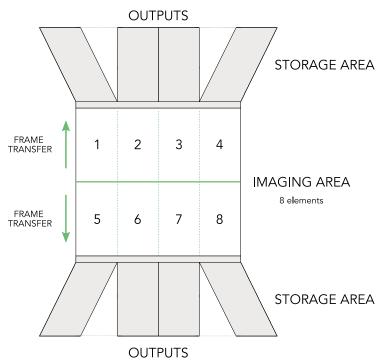

CARACTÉRISTIQUES	SPÉCIFICATIONS	
Senseur	CCD220	
Numérisation	14 bits	
Gain EM	1 - 5000	
Vitesse de lecture	30 MHz	
Fréquence d'acquisition	jusqu'à 3015 fps plein format	
Latence au premier pixel ³	35.5 μs	
Sorties	8	
Bruit de lecture efficace²	< 0.2 e avec gain EM	
Température de refroidissement ¹	-45°C	
Bruit de fond²	< 0.003 e/pixel/image À gain EM de 1000	
Efficacité de transfert de charge ⁴	> 0.99997	
Linéarité	< 1%	
Déclenchement	Interne ou Externe	
Aire d'imagerie	240 x 240 pixels 24 µm x 24 µm aire de pixel	
Efficacité quantique	> 95% at 650 nm (voir Fig. 2)	
Plage spectrale	250 - 1100 nm	

Table 1 Caractéristiques et spécification générales de la Hnü 240

FONCTIONNALITÉS	BÉNÉFICES		
Plage de gain EM de 1 – 5000	Niveau de bruit de lecture efficace le plus faible Capacités inégalées de détection de photon unique		
Niveaux les plus faibles d'injection de charge (CIC)	Le RSB le plus élevé grâce à la réduction du CIC, principale source de bruit des EMCCD		
Technologie brevetée optimisée pour un véritable comptage de photons	Les modes linéaire et comptage de photons sont disponibles en fonctionnement EM		
Plus haute efficacité de transfert de charges	Images plus claires Aucune fuite de pixels		
erformance de refroidissement ultime	Bruit thermique négligeable Efficacité de transfert de charge supérieure		
Refroidissement liquide	Le boîtier scellé empêche les flux d'air indésirables et élimine les gradients thermiques.		
Plus haute efficacité quantique	Meilleure sensibilité grâce au détecteur EMCCD de grade 1 rétroéclairé (voir Fig. 2) ⁵		
Vitesse de lecture jusqu'à 30 MHz	Vitesse d'acquisition la plus rapide pour une caméra EMCCD 240 x 240		
Horodatage hors-pair	Étiquetage temporel haute précision de chaque acquisition		
Faible latence	Faible latence pour les applications d'optique adaptative		
Modes de déclenchement externe	Plusieurs modes disponibles pour optimiser la vitesse d'acquisition		

Table 2 Fonctionnalités et bénéfices de la Hnü 240

SORTIES MULTIPLES POUR UNE VITESSE SUPÉRIEURE

Alors que les EMCCD standard lisent les pixels via une seule sortie, le capteur du HNü 240 se divise en 8 sections et utilise un nombre correspondant de sorties pour une lecture simultanée. Cela permet à la HNü 240 d'atteindre des fréquences d'images inégalées, avec une résolution plus élevée.

Fig. 3 Spécifications du modèle Hnü 240

QUAND CHAQUE PHOTONS COMPTENT

La technologie EMCCD est parfaitement adaptée aux applications à faible flux lumineux nécessitant un bruit de fond minimal, grâce à son bruit de lecture effectif négligeable rendu possible par un gain EM élevé. En mode de fonctionnement linéaire, le gain EM ne peut pas être déterminé avec précision pixel par pixel en raison de sa nature stochastique. Ce mode génère ainsi un facteur de bruit excessif (ENF) qui, à forts gains EM, entraîne une dégradation du rapport signal/ bruit (RSB). En effet, l'impact sur le RSB équivaut à une diminution de moitié de l'efficacité quantique. En mode de comptage de photons (PC), Nüvü Camēras supprime efficacement l'ENF, permettant ainsi une sensibilité au photon unique.

Les caméras ultra-sensibles de Nüvü™ fonctionnent avec succès en mode PC grâce à leur gain EM élevé et à leur bruit de fond minimal. Bien qu'il soit facile d'atteindre de forts gains EM, le processus de multiplication électronique génère davantage d'injection de charge (CIC), qui représente une source de bruit dominante dans les EMCCD. L'électronique innovante pilotant les caméras HNü élimine pratiquement le CIC et réduit le signal de fond total, tout en offrant le gain le plus élevé du marché. Résultat : des données de meilleure qualité en conditions de faible luminosité.

VITESSE D'ACQUISITION SUPÉRIEURE

Le Crop Mode est inclus pour les applications nécessitant des vitesses de lecture plus élevées. D'autres modes de lecture et de vitesse d'acquisition sont disponibles, ainsi que différentes tailles de senseurs EMCCD

BINNING RÉGIONS D'INTÉRÊT⁶

	240 x 240	240 x 60	240 x 30	240 x 15	240 x 7
1 x 1	3058	5526	9265	13999	19243
1 x 2	5255	8828	13374	18439	22744
1 x 4	8246	12536	17351	21474	24371

Table 4 Fréquences d'acquisition de la Hnü 240 dans différentes configurations

Fonctionnalités

POUR UNE ACQUISITION PLUS FLEXIBLE:

- > Accessoire de refroissement liquide
- > Refroidissement compatible sous vide
- > Régions d'intérêt (ROI)
- > Binning

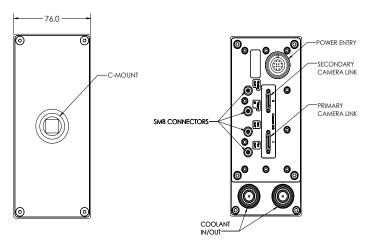
LA QUALITÉ EN PRIORITÉ

Toutes les pièces sont traitées conformément aux meilleures exigences de vide, y compris les joints métalliques scellés dans une salle blanche de classe 10 000 afin d'assurer les meilleures performances de refroidissement sans maintenance. Toutes nos caméras viennent avec une garantie standard de 1 an.

CONFIGURATION REQUISE:

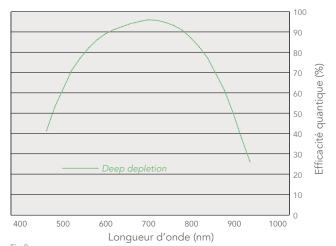
- > Interface de communication: PCIe Camera Link Extended Full
- > Systèmes d'opération: Windows et Linux (CentOS & Ubuntu)

ENVIRONNEMENT DE LA CAMÉRA:

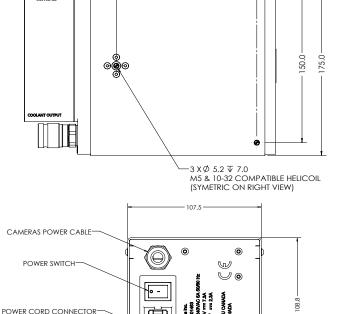

- → Température d'opération: 0°C à 30°C
- > Humidité: < 90 % (Sans condensation)
- > Alimentation électrique: 100 240 V, 50 60Hz, max. 3 A

rivi"

232.1


130.0

DESSINS TECHNIQUES



- 1 À vitesse horizontale maximale, plein format
- 2 Données mesurées à 30 MHz, 3015 fps.
- 3 À partir de la fin du déclenchement de l'exposition. Latence réduite disponible avec du fenêtrage.
- 4 Efficacité moyenne de transfert de charge horizontale mesurée avec un gain EM de 1000 à une vitesse de lecture de 10 MHz.
- 5 Nüvü ne fournit que les spécifications du fabricant du détecteur EMCCD pour les capteurs de grade 1 (par exemple, efficacité quantique, spécifications esthétiques, défauts).
- 6 Les configurations ROI sont choisies pour des fréquences d'acquisition optimisées.

EFFICACITÉ QUANTIQUE TYPIQUE

Pig 2... Plage spectrale typique en fonction de la longueur d'onde, telle que spécifiée par le fabricant du détecteur

Contactez-nous: info@nuvucameras.com +1 514 733 8666 Montreal (Quebec) CANADA

HNü et NüPixel sont la propriété intellectuelle de Nüvü Camēras. Toutes les autres marques appartiennent à leurs propriétaires respectifs. Des modifications progressives sont apportées aux produits, et les spécifications peuvent être modifiées sans préavis. Fiche Technique HNü 240 3.4.6 Français © Nüvü Camēras, 2025

MOUNTING BRACKETS