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ABSTRACT 

The scientific interest in directly image and identifying Earth-like planets within the Habitable Zone (HZ) 

around nearby stars is driving the design of specialized direct imaging mission such as ACESAT, EXO-C, EXO-S and 

AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7” 

and 0.4” respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios in the order 

of 1010 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets, will allow 

establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, 

and stable space telescope, that can achieve high-contrast but has limited resolution. This paper describes an innovative 

instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induce 
Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A 

Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light 

from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high-

precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that 

takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 

years, to reduce the final noise floor in post processing to ~2e-11 levels, enabling high confidence and at least 90% 

completeness detections of Earth-like planets. 
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1. INTRODUCTION  

The question about the existence of planets beyond our solar systems, or exoplanets, has been in the mind of the human 

civilization for thousands of years. In fact, around 300BC, Epicurus wrote in a letter to Erodotus: “There are infinite 

worlds both like and unlike this world of ours”. Scientists have been modeling planetary formation and evolution in 

detail for decades, however the first exoplanet was discovered only 20 years ago. In 1995 Mayor and Queloz [1] found 

Pegasi 51b by utilizing Radial Velocity indirect detection1. At the moment of writing, there are 5335 planet candidates 

and 1564 confirmed planets [2]. As a result, the exoplanet scientific community has compiled enough statistical 

information to predict the demographics of earth-like planets around different star types. Latest statistics suggest that 

there could be up to 55% probability that any given G, F or K type star will have at least one planet with 0.5 and 2 Earth 

radii within the Habitable Zone of the star.  

This recent increase in earth-like occurrence rates has enabled us to consider and specialized mission to search for “the 

pale blue dot” on selected targets and not only survey oriented as all previous exoplanet missions. A target-oriented 
mission can be designed for this goal facilitating direct imaging of the exoplanets, which is high-impact scientific. Direct 

imaging presents two main challenges: 

This recent increase in earth-like occurrence rates has enabled us to consider and specialized mission to search for “the 

pale blue dot” on selected targets and not only survey oriented as all previous exoplanet missions. A target-oriented 



 
 

 

mission can be designed for this goal facilitating direct imaging of the exoplanets, which is high-impact scientific. Direct 

imaging presents two main challenges:  

Contrast: An earth-like planet around a sun-like star is about 1x1010 dimmer than the host star, as a result it is necessary 

to remove diffraction effects of the optical system and any kind of optical aberrations to avoid light contamination in the 

discovery zone. 

Angular separation: The larger the distance from the earth to the host star, the smaller is the apparent angular separation 
between the planet and the star, therefore requiring a larger telescope to resolve it. For example, an earth analog around a 

typical nearby star located at 10pc will have an angular separation of 0.1”, which requires at least a 1.5m telescope 

resolve the planet in visible light. 

To image a planet it is also necessary to suppress the light from the start and the diffraction ring created by the telescope 

aperture, which is typically done using a coronagraph. NASA has studied coronagraphic direct imaging missions for at 

least a decade such as The Exoplanet Coronagraph (Exo-C) [4], the Exoplanet Starshade (Exo-S) [5], and the larger 

WFIRST/AFTA (Wide Field Infrared Survey Telescope / Astrophysics Focused Telescope Assets). These missions are 

scheduled to launch not before 2025 decade. This kind of missions are designed to be capable of imaging habitable 

planets around the nearest 5-20 stars, they cost $1B 

or more and they are not currently funded.  

We propose a mission concept called ACESAT 

that is focused on taking the first image of and 
earth-like planet around the Alpha Centauri A & B 

(αCen A&B) binary star system. This system 
present a unique opportunity for direct imaging 

missions because it is the nearest star system to us, 

as shown in Figure 1; Specifically, αCen A&B 
habitable zones span 0.4-1.6” in stellocentric angle 

~3x wider than around any other FGKM star. In 

theory this enables a visible light telescope as small 

as 25cm, equipped with a modern high 

performance coronagraph, to resolve the habitable 

zone at high contrast and directly image any 

potentially habitable planet that may exist in the 

system.  

According to the latest estimates from the Kepler mission, the occurrence rate of exo-Earths is about 55% per star (for 

size range of 0.5-2 Earth size and using the extended habitable zone definition [5]). Because αCen A&B is a binary, the 

chances of a potentially habitable planet existing around one of the two stars is 1- (1-0.55)2 ~ 80% assuming independent 
probabilities. We realize that there is unique opportunity detect and observe for the first time an earth like planet in this 

system, and accomplish a high-priority directive of the decadal survey; “The ultimate goal is to image rocky planets that 

lie in the habitable zone—at a distance from their central star where water can exist in liquid form—and to characterize 

their atmospheres.”  

1.1 Scientific goals and objectives 

The top-level scientific goal of ACESat is to directly image 0.5 to 2 earth radii planets’ equivalent brightness, in the HZ 

of the αCen A&B planetary system during a two year mission. The specific science objectives are summarized below: 

Objective 1.1. Directly image planets in the region around αCen A&B from the inner HZ edge out to the dynamical 

stability limit, with >90% completeness down to Earth brightness 

Objective 1.2: Directly image a debris disk around αCen A and αCen B if one exists, (down to 1 zodi variations). A 

thick or more dense debris disk scatters starlight decreasing the plant contrast with background and requiring more 

signals for the detection.  

Objective 2.1. Determine the orbits of planets found in obj. 1.1. by fitting a keplerian motion to the detected source 

over time. 
Objective 2.2. Constrain the size and mass of planets. The dataset for this objective is the same as for objective 1.1, 

except that the reflectivity as a function of wavelength can be used to help constrain planet size.  

 
Figure 1: Apparent configuration of the αCen A&B system as seen 

from the earth. The disk on the left represents αCen A and the one on 

the right is αCen B. The HZ of each star is shown in green and light 
green to represent the classical and extended HZ. 



 
 

 

Objective 2.3. Characterize albedo variations 

The brightness of that planet will be measured on each image. A corresponding periodogram will also be computed that 

can suggest the planet rotation period. 

2. MISSION REQUIREMENTS 

To accomplish the scientific objectives we are interested in observing the HZ of both systems, from the inner edge found 

out to the stability limit where planets can remain in their orbits. These boundaries have been calculated at 0.93AU and 

0.53AU for the inner HZ [5,6] and 2.79 +/- 0.65AU and 2.49 +/- 0.71AU for the stability limit [6] of αCen A and B 
respectively. Figure 1 shows the equivalent of these physical parameters in angular separation as seen from the earth, 

and for the most likely planetary system inclination. The classical and extended HZs are shown in dark and light green 

respectively. Also, a schematic of the solar system apparent size if placed at αCen A&B system distance is shown. 
Finally, this figure shows the areas accessible for the instrument baseline design in blue and red for different contrast 

levels. These values are summarized in table 1. The figure and the table refer to the Inner Working Angle (IWA), which 
is the smallest angular separation that the instrument can observe from the star, and the Outer Working Angle (OWA), 

which corresponds to the larger angular separation that instrument can observe.  

Requirements shown in table 1 are in units of angular separation in λ/D, where λ is the operational wavelength (500nm) 
and D, which is the telescope aperture (45cm) for this. 

3. INSTRUMENT DESIGN 

3.1 Instrument design rationale 

The ACESat design is based on a compact space-based off-axis telescope with a high-performance loss-less internal 

coronagraph embedded as the secondary and tertiary mirrors. The light reaches the scientific camera after only 5 

reflections maximizing throughput and optical stability. Ground based telescopes cannot deliver the contrast requirement 

due to atmospheric perturbations, and day/night observation cycling regardless of theirs aperture.  

Top-level requirements 

The ACESat instruments’ top-level requirements flow from the scientific goals 

1.1 to 2.3, and the geometry and characteristics of the αCen A&B systems. They 
can be summarized as achieving 10-8 raw contrast in the region of interest that 

spans from 1.6 to 12λ/D over 5 bands at 10% width covering from 400 to 700nm.  
This mission relies in the ability of enhancing the instrument raw contrast ratio of 

10-8 by a factor of 5x102 raw to achieve a final contrast of 2x10-11 utilizing 

calibration and data obtained during 30 days of continuous integration. This 

should allow to detect an earth-like planet with SNR=5.  

The instrument contrast CBE is 0.5x10-11, assuming an exposure time of 30 days 

per star per quarter, a raw contrast of 1x10-8, a 45cm aperture telescope, and end-

to-end efficiency that ranges from 46% to 58% (considering mirror reflectivity, 

detector QE, and dichroic losses) as a function of wavelength, and ODI data post 

processing. This contrast allows an SNR=20 detection of an earth like planet with 

ample margin with respect to the requirement of SNR=5. 

3.2 Instrument overview 

The ACESat instrument functional block diagram and optical design is shown in 

Figure 2, which is comprised of the Instrument Element and the Spacecraft 

Element (S/C). There are three instrument subsystems: a) Shroud Assembly (SA), 

b) an Optical Telescope Assembly (OTA), and The Focal Plane and Electronics 

Subsystem. The OTA includes: a) a Telescope, b) a high-performance 

coronagraph, c) a Deformable Mirror (DM), d) a Focal Plane Occulter (FPO). The Focal Plane and Electronics 

Subsystem is composed of: a) Focal Plane Assembly that includes the Science detector and the Low Order Wave Front 

Sensor (LOWFS), both mounted to the OTA and b) the Payload Electronics Box (PEB) that contains the controllers for 

the DM, detectors, and tip/tilt, as well as the payload computer is located within the S/C. The Optical Telescope 

 

Table 1: ACESat scientific requirements 

Contrast IWA OWA 

aCen B 

6x10
-11

 0.4” 0.95” 

6x10
-11

 1.6λ/D 3.8λ/D 

aCen A 

2x10
-11

 0.7” 1.63” 

2x10
-11

 2.7λ/D 6.5λ/D 

Stability limit (aCen A) 

2x10
-11

  2.07” 

2x10
-11

  8.3λ/D 

Sensitivity 

SNR=5 1.6 Days SNR=5 

ODI 
Calibration 

30 Days ODI 
Calibration 

 



 
 

 

Assembly (OTA) utilizes a 45cm aperture off-axis Ritchey–Chrétien (RC) telescope that has a Phase Induced Amplitude 

Apodization (PIAA)[8,9,10] coronagraph embedded on the secondary and tertiary mirror. A real time computer reads the 

LOWFS data and sends control commands to the secondary mirror to control tip/tilt and defocus. The off-axis planet 

light continues through a series of dichroics creating 5 bands from 400 to 700nm, which are imaged by an EMCCD 
science detector. The mirrors are coated with protected silver for optimal reflectivity. The PEB, accommodated within 

the S/C Element, include the camera and actuator controllers, and the payload processors. A Shroud assembly provides 

stray light control, temperature control and optics protection functionality. 

3.3 The Optical Tube Assembly 

The OTA includes a Silicon Carbide telescope complaint with mechanical and thermal properties requirements, for 

mechanical hysteresis and distortions due to differential Coefficient of Thermal Expansion (CTE). The telescope is 

operated at 10˚C, and must remain stable for each observation period (1 quarter) to 1˚C along metering structure and 

0.3˚C lateral gradients across the primary mirror, which is a 45cm aperture off-axis SiC 80% lightweighted. The 

secondary mirror of the OTA is also the 

first component of the coronagraph 

(PIAA 1), which acts as the system 

stop and provides tip-tilt/focus control. 
The secondary mirror active mount has 

a tip/tilt range of +/-5” and a focus 

range of 10µm. The tertiary mirror of 
the OTA is also the second component 

of the coronagraph (PIAA 2) and 

reimages the telescope pupil on the 

Kilo-DM deformable mirror, which is a 

9.6 mm square with 32x32 actuators 

that have a 300 µm pitch and 1 µm 
stroke. The DM corrects the wave front 

 
Figure 2: ACESAT subsystems and components and functions. Top: Instrument optical layout side and top view are shown. 

Bottom; Functional block diagram of the instrument including subsystem TRL assessment in subsystem areas 

 
Figure 3. Representation of the PIAA coronagraph principle (left) and actual PIAA 

mirrors at NASA Ames Research Center (center, right). 



 
 

 

errors creating a high-contrast dark zone where the planets can be discovered. Downstream of the DM the target star is 

imaged on the FPO surface, which acts as an angular beam splitter rejecting the star light into the LOWFS that provides 

tip/tilt and focus measurements. (Figure 3) 

3.4 Starlight Suppression System design 

The coronagraph used by ACESAT is based on the Phase-Induced Amplitude Apodization (PIAA) coronagraph which 

members of the Ames Coronagraph Experiment (ACE) team have been pioneering9,10 and maturing11. Without a 

coronagraph, the image of a star in a conventional telescope is the so-called Airy pattern, which is the Fourier transform 

of the telescope pupil. This Airy pattern has diffraction 

rings, which overlap the location of the habitable zone, and 

are many millions of times brighter than planets. PIAA 

eliminates these sharp edges by employing two aspheric 

mirrors. The design process of PIAA systems for 

unobscured apertures is very mature with multiple PIAA 

systems designed for several mission concepts apertures 

such as ACCESS, PECO, EXCEDE, and Exo-C, with the 

PI and other members of ACESat being directly involved 

with these designs. The ACESat PIAA design will be 

optimized during phase A trade study, but as a baseline and 

an existence proof, we adopted a design similar to the Exo-

C PIAA, which in the absence of errors achieves a contrast 

better than 1x10-8 averaged between 1.6 and 10λ/D, 

satisfying ACESat requirements.  

Multi-star wavefront control and second star supression. Currently Electric Field Conjugation (EFC) [11] or similar 

algorithms has been used at the ACE and JPL PIAA coronagraphic testbeds to measure the coronagraph wavefront and 

creating dark zones controlling the DM. For binary systems like Alpha Centauri, incoherent light coming from the (off-

axis) companion diffracts light in the dark-zone of the target on-axis star. Moreover, the angular separation of the binary 

system will be beyond DM control region of 16 λ/D, limited by the number of DM actuators, for band 1 on the first year 

of the mission (31.2 λ/D) and all the bands by the end of the mission due to increasing angular separation of the binary 

system.  

Implementing the Super Nyquist Multi Star Wavefront Control (MSWC) [12,13,14] solves the dark zone and angular 

separation problems.  MSWC utilizes PSF replicas created by the DM quilting to control dark zones beyond the Nyquist 

frequency of the DM. This algorithm is currently about TRL-3 thanks of rapid progress achieved at the ACE Laboratory 

as part of an APRA effort funded to develop this technology. The demonstration of the Multi-Star algorithm is shown in 

Figure. The dark zone with a 5x10-8 contrast is created at 3 λ/D for the target star with a binary of the same intensity 

located at 14 λ/D.  

The SNWC algorithm was also 

demonstrated for the ACESat 

science case for year 2022 

observing on band 3 

(lambda=555nm at 10% 

bandwidth) as shown on Figure 

4. The separation between the 2 
targets is 29 λ/D and the 

potential planet at 4 λ/D from 

the on-axis star. A dark zone of 

3.3x10-8 median contrasts is 

created by the DM between 3-7 

λ/D from the on-axis star. For 

these simulations we used a 

 
Figure 4. Left:  Demonstration of MSWC on the left 

where a zone of high contrast can be achieved by 
controlling speckles from a binary component (top left) 

folded outside the nominal AO control radius. Right: 
Simulation of the algorithm applied the Alpha Cen 
system for the second year of the mission reaching 

 
Figure 5. Old and new DM controllers. Flight prototype demo shown on the right. 



 
 

 

classical apodized coronagraph, ensuring that the results will be significantly better when a better performance PIAA 

coronagraph is modeled in the wavefront control simulation.  

Deformable Mirror (DM). A DM is used to remove speckles created by low special frequency figure errors in the 

mirror surfaces. We selected a Boston Micro Machines Kilo DM, which has 1024 actuators with a 300 µm pitch and 1 

µm stroke for the space-qualified version. The DM has a square 10x10 mm aperture. Currently, the DM controller is 
large, heavy and not space qualified. We are developing an integrated wave front control system that contains the DM 

and the controller in a single solid-state package. This system weight is only 0.5 Kg and consumes 4.5 W. The 

demonstration controller shown on Figure 5 has been developed to demonstrate feasibility. The development cost has 

been included in the budget. Also the DM maintains a λ/25 @ 550 nm wave front error on the focal plane the telescope 
uses a DM to compensate for dynamic errors induced by thermal loads. 

3.5 Instrument fine pointing control and jitter stabilization 

The instrument has camera that receives the star light reject by the coronagraph and measures the payload jitter and 

stabilizes it within 0.5 mas by sending Tip/tilt and defocus commands to the actuator placed behind the secondary 

mirror. A Low Order Wavefront Sensor (LOWFS) utilizes a 3-zone focal plane mask that rejects the core of the star’s 

PSF to an imaging system that magnifies the PSF for proper sampling on a fast camera that takes slightly defocused 

images of the PSF, running at 1,000 Frames Per Second (FPS). Our baselined camera is the Imperx Bobcat CLB-

B0610M-TC, with a True sense CCD KAI-0340S from which we read out only 40x40 pixels. This configuration can 

deliver a pointing knowledge better than 1e-3 λ/D RMS. The algorithm used to calculate the correction is an LQG [15] 

controller, which uses a Kalman filter. 

CBE stability is better than 1.5e-3 λ/D 

rms, i.e. 0.00038”@550 nm. 

3.6 Mechanical and thermal design 

The OTA mirrors and metering structure 

will be manufactured of SiC given its low 

thermal distortion, high stiffness, high 

optical quality, and dimensional stability 

needed for ACESat. The SiC 

manufacturing process allows the 

manufacturing of extraordinarily complex 

parts that have virtually zero shrinkage 

(less than 0.1%) allowing to cast the part 

to its near-net shape reducing risk and 

saving cost and schedule.  

SiC optical substrates undergo a surface generation process using state-of-the-art 3-axis computer controlled grinding 

machines. The first few passes achieve the substrates mass margin and then the following passes create the specified 

surface figure prior to optical polishing.  

The Silicon Carbide OTA is based on an L-Shaped structure that can support the Off-axis optics as well as provide a 

uniform surface to avoid thermal gradients (Fig. 6). The structure has be been optimized to minimize weight and 

maximize stiffness. The OTA weights 25.2kg including the metering structure and mirrors. Its first natural frequency is 

at 138Hz which is higher than any vibration source on the S/C avoiding coupling. The OTA will be attached to the S/C 

mounting plate utilizing 3 Semi-kinematic titanium flexure mounts and lapped G-10 pads to thermally isolate the OTA 

and limit mount distortion and bolted and pinned joints maintain alignment under launch conditions. A polished 

aluminum shroud that is covered with MLI for insulation is also attached to the S/C mounting baseplate. 

The instrument will be maintained above its environment at 10˚C using proportionally controlled polyimide strip heaters.  

These heaters will be divided into six zones and be mounted to the top and back sides of the silicon carbide structure 

(Fig. 7). The instrument thermal design requires a peak operational power of 19 Watts and a Safe Mode power of 
approximately 4 Watts. 

 

 
Figure 6: ACESAT subsystems and components and functions. Top: Instrument 
optical layout side and top view are shown. Bottom; Functional block diagram of 

the instrument including subsystem TRL assessment in subsystem areas 



 
 

 

The CCD will be 

thermally isolated (with 

G10 spacers and a low 

emissivity finish) and 

thermally coupled to a 

dedicated CCD radiator 
on the sun shield capable 

of maintaining the CCD 

at -85 ˚C.  Other heat 

dissipating components 

on the coronagraph will 

be thermally isolated and 

heat strapped to a heat 

pipe, which will be 

coupled to a second radiator on the sun shield.  The sun shield (extending above the spacecraft top deck) will be 

blanketed on all external surfaces including under the radiators.  The sun shield shroud will have a polished aluminum 

exterior surface finish and will also be isolated from the aluminum cylinder with a G10 spacer. The instrument thermal 

design meets equilibrium (10˚C), axial ˚C and lateral temperature requirements with margin (Figure 6). 

3.7 Focal Plane and Electronics 

Focal plane detectors and their associated electronics accompany both the LOWFS and the science camera.  These 

functions performed are photon detection, sensing, storage, and control of the WFS&C system.  The payload computer 

executes the computational processes for these functions. 

Science Detector (SD) and Dichroic System:  The requirements to select the scientific detector are Quantum Efficiency 

(QE) better than 70% from 400 to 700nm, less than 0.05e- Read Out Noise (RON) and a Dark Current (DC) less than 

5x10-2 e-/pix/s to be able to reach the SNR or sensitivities required exposure times are 10s or shorter to prevent more 

than 1% of the frames from being affected by cosmic rays, imposing a very low read out noise requirement to avoid a 

significant penalty on RON.    

We selected the e2v 201-20 Electron Multiplier CCD (EMCCD) which outperform the requirements achieving 0.03e- 

RON and 5x10-4 e-/pix/s DC.  The detector has a format of 1024x1024 pixels with 13µm pitch, which matches the 

desired sampling of 4pix per resolution element (resel) to perform EFC and MSWC. Our resel is 0.31” resulting in 51pix 

per HFoV or 100x100pix for 

each band. The five bands are 

filtered using sequential 

dichroics and mirrors as shown 

in Figure 8, which are imaged 

adjacent to each other on the 

detector to avoiding moving 

parts for the band selection. All 

the bands will be imaged 

simultaneously, however only 

one band will be actively 

controlled by the DM at a time. 

Nuvu manufactures cameras 

based on the EMCCD 201-20 

detector [16] and provides a 

controller that achieve the 

desired performance (Fig. 8) 

The same system has been selected for the AFTA-C mission and a technology development effort with Nuvu, the Center 

for Electronic Imaging, and First Light Imaging have commenced to bring these detectors to TRL-6 by January 2016. 

ACESat will follow this detector maturation program and implement the proven version on the mission. The CCD will 

be cooled down to -85˚C utilizing thermoelectric cooling and a conventional radiator. 

 
Figure 8. Left: QE of the Science detector e2v EMCCD 201-20 over-plotted by the five 
spectral bands selected.  Top Right: a schematic of the multi-band dichroic system that 
operates in a converging beam and provides equal path lengths to the detector to ensure 

confocality between bands.  Bottom Right: A depiction of the band locations on the detector 
and a Nüvü camera and controller that uses the EMCCD 201-20. 

            
Figure 7. Instrument thermal control system and thermal analysis showing the 



 
 

 

LOWFS Camera:  The Low Order Wavefront Sensor (LOWFS) measures the payload jitter and stabilizes it within 0.5 

milliarcseconds by sending tip/tilt and defocus commands to the actuator placed behind the secondary mirror. The 

LOWFS utilizes a 3-zone focal plane mask that rejects the core of the star’s PSF to an imaging system that magnifies the 

PSF for proper sampling on a fast camera that takes slightly defocused images of the PSF, running at 1000 frames per 

second (FPS).  An off the shelf camera with these capabilities is the Imperx Bobcat CLB-B0610M-TC with a True sense 

CCD KAI-0340S that has 7.4um pixels.  The LOWFS reads out a 40x40 pixel region of interest on the detector. This 

configuration can deliver a pointing knowledge better than 1e-3 λ/D  RMS. The algorithm used to calculate the 

correction is an LQG [17] controller, which uses a Kalman filter and a priori knowledge of the disturbance, obtained by 

a procedure of identification of the vibrations.  With this design, a stability better than 1.5e-3 λ/D rms, corresponding to 

0.38 mas at 550 nm, can be achieved. 

3.8 Instrument Software and Electronics 

The instrument is operated by a payload computer that perform the following tasks; Execute the payload master 

control routine that computes the wavefront control and Jitter control commands, as well as pre-process and deliver 

science products. This computer also run the DM, LOWFS, Science camera, heaters controllers and the communications 

with the S/C.   

Our data rate output is defined by the following variables. 100x100px frames sampled at 16bit resulting on 

20KB frames. We sample 5 bands simultaneously generating 100KB per exposure. The exposure time has been set to 

10s to avoid that a cosmic ray damage (3-4 hits/cm^2-sec) a long integration frame. An onboard algorithm using a 

median filter will remove frames corrupted by cosmic rays or high energy particles before storing them.  

A control electronic box will 

be mounted separately from 

the instrument to avoid heat 

dissipation instabilities. This 

box will contain the payload 

computer and controllers for 

the two cameras, DM, 

heaters and Tip/Tilt 

secondary. We estimate a 

total power consumption of 

40W on this box, that will be 

mostly dissipated on the box 

thru a thermal connection to 

the S/C. 

 The payload computer processing power is dominated by the LOWFS sensor that needs to perform 1,000 

Singular Value Decomposition of 40x40px frames (M=1600px) into 3 modes (N) per second, resulting in 5.8x107 float 

point operations per second (Based on a SVD complexity of 4MN2+8N3). In addition, Multi-Star Wave front Control has 

similar processing powers requirements and it will be executed every 10 seconds. This algorithm requires 64GB of 

memory to store large matrices needed to run the EFC routine. The Software functional diagram is shown in Figure 9. 

The Payload Instrument suite utilizes three boards from MOOG BROAD REACH for managing controllers, facilitating 

the closed loop LOWFS control system, and Science Detector data management:  The AJEET BRE 440, the CMOAB (4 

GB RAM), and the DMOAB (12 GB Flash). 

3.9 Radiation, contamination and performance degradation    

The nominal radiation environment for the ETO in this period is predicted to be 6krads for the baseline mission duration. 

S/C and Instrument electronics will be assessed to carry significant margins beyond this to ensure operation for the full 

mission. The design performances consider end-of-life specifications. 

A contamination control plan will be implemented for material selection (Adhesives, coating, etc.), design (eg. Shroud 

forms a CC barrier, and for I&T to ensure particulate and molecular contamination are controlled to acceptable levels, 

Figure 9. ACESat software functional diagram 



 
 

 

nominally by conducting I&T activities within a 10k cleanroom 

environment, with appropriate controls (personal & procedures) and 

protocols (eg. Bake-outs). A plume analysis will be performed to assess 

On Orbit contamination during operations. Degradation affects will be 

consider when selecting EEE parts such as CCD’s and FPGA’s. 

3.10 Instrument MEL and Budgets and ICD 

The instrument has a total mass of 45.4kg. The SiC OTA weights 

25.2kg and remaining is electronics, harness and cables. The PEB consumes 40.5W and 20W addition power is allocated 

for heaters with a total of 60.5W. Table 2 shows the interface values for mass, power, pointing and data rates required.  

4. SPACECRAFT DESIGN 

The spacecraft is a high-heritage, low risk design, It incorporates only subsystems and components used by NASA-

Ames or SSL on recent spaceflight missions. The S/C is designed to provide sufficient Delta-V for injection into an ETO 

orbit, provide payload accommodations including Power, TTC, TCS and pointing stability to meet mission objectives. 

4.1 Subsystem descriptions  

Structure: The spacecraft primary structure design is driven by a desire to 

have the first structural vibrational mode at as high a frequency as 

practicable, to maximize separation from the frequency band of the 

pointing system. To accomplish this, we have selected a structural design 

technology consisting of Graphite-Epoxy honeycomb panels bonded to 

Aluminum frames, fastened at the edges. The spacecraft general layout will 

follow the octagonal geometry and dimensions of the LADEE design, 

extended in length to accommodate the telescope inside an enclosed 

volume. Solar array cells will be attached rigidly to the structural panels to 

avoid introducing any additional flexible modes. Internally, a modular 

design approach will be followed, with the 3 main modules being the 

propulsion module, the avionics module, and the payload module. A model 

of the structure is shown in Figure 10. The bus and the propulsion system 

is on the bottom of the S/C and the payload on top.  

Propulsion Subsystem:  The Delta-v budget from GTO to Earth Trailing 

heliocentric orbit (C3 = 0.7) is 800 m/s; this requires a bi-prop propulsion 

subsystem. We have selected a build-to-print copy of the LADEE 

propulsion subsystem to provide this capability. It is a Helium pressurized, pressure regulated bi-prop system. It utilizes 

a single main thruster supplying 450 N of thrust with an Isp of 319 sec.  The ACESAT Delta-v budget requires 93.4 kg of 

propellant (including 4.5 kg for ACS) which is stored in 4, 31 liter tanks including anti-slosh diaphragms. The system is 

sized to accommodate 134.2 kg of propellant (30% margin). 

4.2 Command and Data Handling:  

C&DH will be accommodated by a Broad Reach Engineering (BRE) Integrated Avionics Unit (IAU) of the same general 

characteristics as the IAU flown on LADEE, with modifications noted below.  The LADEE IAU has a 3U form factor 

with a backplane accommodating up to 8 cards. The LADEE IAU populated the backplane with 7 cards, including a 

Single Board Computer (SBC) card hosting a Rad 750 CPU, a digital MOAB (DMOAB) card, an analog MOAB card 

(AMOAB), a Solar Array & Charge Control Interface card, 2 PAPI boards and 2 SATORI boards, leaving one spare slot.  

DC-to-DC converters are hosted on a separate panel that is heat-sunk to the IAU enclosure.  The ACESAT IAU would 

be modified to include a Mass Memory card occupying the unused cPCI slot and providing 192 GB of memory.  The 

DMOAB and AMOAB cards would each be modified to include an additional 12 GB of memory, bringing the total up to 

216 GB 

Table 2: ACESAT interface values 

Resource CBE [units] 

Instrument mass  45.4 kg 

Power 60.5 W 

Voltage (DC) 100, 28 &, 5 V 

SC Pointing (1-Sigma) 5 arcsec 

Sci. Ops. data rate 120 KB/hr 

 

 
Figure 10. ACESat spacecraft and payload 



 
 

 

Power: The spacecraft nominal bus voltage is 28 VDC (21.5 to 32 VDC). Electrical power will be supplied by rigid, 

body mounted solar arrays attached to all sides of the spacecraft with 28.3% efficient solar cells will be used.  The total 

array size is 7.2 m2, which is sized to supply the steady state power requirement of 438.4 W (during all operational 

modes) at the end of life. The spacecraft battery is sized to achieve ≤ 80% depth of discharge during the worst case 

eclipse period (2 hours of 250 W power consumption during GTO burn).  It is a build-to-print copy of the LADEE 

battery and consists of one, ABSL 24AH unit, incorporating LiFePo 18650 cells. The payload requires 100 VDC at low 

power to operate the steerable secondary mirror; this power will be supplied from a dedicated power board located in the 

payload integrated avionics box.  

4.3 Attitude Determination and Control (ADC):  

Spacecraft stability requirements 

The pointing stability requirement, which is driven by the PIAA coronagraph design, is 0.5 mas for all frequencies. The 

S/C pointing accuracy required is +/- 2.5” of the target in order for the instrument to acquire it. The payload LOWFS 

will provide common path, absolute pointing knowledge of 7.5x10-4 arcseconds to the spacecraft attitude control and to 

the payload computer that will send correction tip/tilt and defocus corrections to the secondary mirror to maintain the 

target pointing within 1x10-3 arcseconds. The ability of the 

Fine Pointing System of the instrument to control vibrations 

imposes the maximum jitter allowed on the spacecraft of 0.1” 

from 0 to 0.1Hz, an attenuation function with a slope of -

3as2/Hz. For 0.1Hz to 300hz, and 1mas jitter for frequencies 

higher that 300Hz.  

After an initial checkout and commissioning phase, the 

telescope will be pointed at the target star system and remain 

undisturbed for periods up to 100 days. This requirement 

drives the strategy of the ADC system design to a very low 

noise, disturbance-rejection type control system. The primary 

attitude pointing control actuator is a four-wheel tetrahedral-

array Reaction Wheel Assembly (RWA). We propose to use 

23 Nm-s Teldix wheels with a maximum torque of 0.09 Nm, 

each (SSL heritage). The RWA will be mounted to the 

spacecraft via a MOOG viscoelastic Vibration Source 

Isolation system to reduce wheel imbalance jitter transmitted 

into the spacecraft structure. The RWA wheel size is chosen 

Table 3. Spacecraft pointing requirements 

Pointing Accuracy +/-2.5” 

Jitter (RMS 1-σ between 0-0.1Hz) 0.1” 

Jitter (RMS 1-σ 0.1 to 300Hz)  -3as2/Hz 

Jitter (RMS 1-σ for >300Hz) 0.5mas 
  

 
Figure 11. (Left) the strategy for the control system that will incorporate knowledge from the telescope and effect control with 
the RWA on the S/C bus; and (right) the stability achieved from a control system utilizing position and derived rate knowledge 

from the payload under the influence of constant solar torque. 

 



 
 

 

to allow the storage of 100 days of solar torque without the need for desaturation. Desaturation of the RWA will be 

accomplished at the time of the quarterly spacecraft roll maneuver and will be effected by the bi-prop attitude control 

thrusters.  

Initial simulation shows that deriving body rates from the telescope attitude at 10 Hz is acceptable for meeting the 

stability requirements levied on the spacecraft. Figure 11 right shows the stability achieved from a control system 

utilizing position and derived rate knowledge from the payload under the influence of constant solar torque. 

The control system’s stability is nearly a factor of ten more stable than the requirement.  It should be noted that reduced 

jitter from the RWA mounted on dampers is not included in this model; however, SSL analysis for a similar wheel, 

without dampers, shows that this jitter will not exceed the stability requirement of 0.1”. 

Thermal Control:  The spacecraft bus is a hot-side/cold-side, cold-biased passive design with strip heaters located near 

critical components. Spacecraft internal components will be maintained at 10C, +/- 10C. The spacecraft payload bay has 

a special controlled interface with the telescope. The spacecraft bus is required to provide 50 W of conductive thermal 

dissipation at the telescope mechanical interface and to maintain a radiative balance with the external surface of 

telescope shroud. Radiative balance will be maintained passively by keeping payload bay walls at constant temperature 

via albedo-controlling surface coatings and conductive heat straps. The spacecraft provides ICD-controlled data, power, 

thermal conductive, and thermal radiative interfaces to the payload which are critical to temperature management of the 

telescope metering structure.  

4.4 Telecommunications Subsystem:  

ACESat TT&C is driven by the concept of operations, which requires quarterly Ka and X band downloads of the science 

data at high data rates and weekly contacts with the spacecraft housekeeping (H&S) data downlink & Commands uplink.  

TT&C also operates during LEOP and spacecraft saving events. Four LGA’s with 3db cone angles of 75◦ allow the 

spacecraft to contact Earth without reorienting the spacecraft, utilizing one LGA at a time via a switching network. Each 

LGA is used for both transmit and receive via a diplexer. The X-band transponder is capable of receiving command, 

transmitting telemetry and performing coherent ranging which would be needed for deep space missions. The telemetry 

output of the X-band transponder is connected to the X-band TWTA. The X-band downlink uses a 50-W TWTA. A link 

analysis, with 3db margin closes the link with 95% weather availability at 10 degrees of elevation over any DSN 34-m 

BWG antenna at the minimum data rate required for regular housekeeping telemetry. The quarterly science data Ka-band 

transmitter, horn antenna, and 35-W Ka-band TWTA provide an adequate EIRP. The Ka link closes with 95% 

availability at 20 degrees of elevation over any DSN 34-m BWG antenna for the minimum data rates required for 

quarterly downloads shown in Fig. F.2.4. The command signaling is in accordance with DSN standards for commanding. 

The downlink on the X-band will use BPSK modulation with subcarriers and NASA standard concatenated coding. The 

Ka-band downlink will employ BPSK modulation with (8920,1/6) turbo coding.  

5. MISSION DESIGN 

The baseline mission concept is for launch service delivery to a Geosynchronous Transfer Orbit (GTO). The Delta-V 

budget to transfer from GTO to Earth-trailing orbit is ≈ 800 m/s. This drives the spacecraft to specify a high performance 

bi-propellant propulsion system. 

A survey of industry (via Sources Sought) indicated that no current or recent heritage spacecraft bus was available that 

would meet requirements 1-3 at a cost consistent with a Class D mission.  A semi-custom design is therefore required, 

with heritage at the subsystem level. The proposed design is based heavily on use of LADEE and SSL communication 

satellite heritage spacecraft subsystems, including propulsion, avionics, structure, ACS, power, comm., thermal, harness, 

flight and ground software 

ACESat will be powered-off during launch. ACESat will be commanded up to and including separation through the 

primary spacecraft. Separation sensing and confirmation will by ACESat.  



 
 

 

 
Figure 12:  Rideshare arrangement on 

primary communications satellite 

Real-time command and telemetry communications will be performed using X-band. Ka-band will be used for science 

data. The NASA Near Earth Network (NEN) will be used while in GTO. During Heliocentric Orbit Insertion, the NEN 

and the Deep Space Network (DSN) will both be utilized. The DSN will be used in the operational orbit.  

After a commissioning and calibration period, ACESAT will 

perform its primary mission observation over a period of two years. 

The telescope will be body pointed by the spacecraft. Coarse 

alignment will be through the spacecraft star-tracker. 

ACESat will be placed into a helio-centric earth-trailing orbit for 

science observations. The orbital period is 367 days. In this orbit, 

the spacecraft will drift away from the earth at a rate of 0.21 AU per 

year. This orbit was selected since it offers a relatively benign 

environment (compared to earth orbit), minimizing spacecraft 

exposure to disturbances, and allows for continuous observation of 

target stars. The orbit parameters are shown in Figure 12. 

5.1 Launch Services and Launch Vehicle Compatibility  

Alternative access to space will be as a secondary payload with a 

commercial geosynchronous communications satellite as shown in 

Figure 12. The market for geosynchronous satellite is stable with a 

projected average of 23 GTO launches per year through 2020. The 

advantages of this secondary payload approach are similar to those 

for hosted payloads and include economic and schedule benefits.  

5.2 Operational modes and timeline  

Mission Timeline: The nominal ACESat mission  is divided into three phases–checkout, primary science, and extended 

science. The Checkout phase lasts approximately 90 days, and includes launch into GTO, heliocentric orbit injection, 

spacecraft checkout, instrument checkout, and dust cover ejection. The Primary Science phase lasts for the next two 

years and covers the observations of Alpha Centauri. The Extended Science phase lasts for one year and includes 

observations of Sirius, Procyon, and Altair. The instrument 

has the following operational modes that are the following: 

a)  Off – instrument is powered off.  Survival heaters are on, 

controlled by the spacecraft 

b)  Standby - the instrument is powered, the payload processor 
is running and the subsystems are ready to perform 

operations. The instrument remains in this state during the 

quarterly downlinks and prior to the start of calibration.  

c)  Calibration – used during the calibration period. 

d)  Target acquisition – used to establish pointing following 

spacecraft coarse alignment on a target. (this mode is used 

at the start of each star observation) 

e)  Data acquisition - instrument is acquiring science data. 

Target acquisition:  

Step 1, Spacecraft slewing: After a target is selected for 

observation, the S/C will slew to the target’s coordinates 

and will hold the pointing to an accuracy of +/-2.5”.  

Step 2, Spacecraft Jitter stabilization: Then, the target will be 

within the LOWFS FoV, which will provide the instrument and the S/C with high-precision pointing information and 

the spacecraft will start a “low jitter” operation state.  

Step 3, Data acquisition. The LOWFS commands the telescope secondary mirror stabilizes the pointing to the 

coronagraph down to 0.0005” during observations. Pointing update commands are sent to the S/C when drifts bring 

Figure 13: The ACESat S/C in each of its four orientations 
throughout the observing year. 



 
 

 

the tip/tilt range approaching the limit. MSWC will continue running at a gain low enough that the photon noise 

contribution of probes is negligible while still high enough to track slow variations of the quasi-static speckles, 

enabling 1e-8 raw speckle contrast over each quarter. 

5.3 Calibrations  

Once the telescope is on the desired orbit and pointed to the target we will calibrate the star brightness and adjust 

LOWFS exposure time, star alignment of the optical system and calibrate the LOWFS modes (tip/tilt and defocus). 

Then, LOWFS control loop will close to maintain the star within 0.0005” of the telescope optical axis. The next step is 

to select an observation band on the detector and execute MSWFC to achieve 1x10-8 contrast in between 1.6 and 10 λ/D. 

This DM setting is saved for the next time that the same band is selected. After the calibration is performed the scientific 

target observations starts obtaining 10 second exposures for 1.6 days in each band. 

Science Observations/”Quarter-in-the-Life” 

 Primary Science period will be divided into observing quarters, which last for approximately 91 days. During each 

quarter, the spacecraft will be inertially pointed at the target star, and will continuously collect data, until physical 

spacecraft constraints (sun avoidance, telecom, power, and thermal) dictate that the spacecraft to be re-oriented by 

rolling 90-degrees. Figure 13 shows the spacecraft in each of its four orientations throughout the observing year. There 

are no time critical events required to ensure the successful collection of science data. The ACESat operational cadence 

repeats on this quarterly basis, so it’s useful to look at a “Quarter-in-the-Life” of ACESat.  

The science observation quarter is divided into three periods: Calibration, Science Observation, and Data Downlink. The 

quarter begins with the calibration period, which lasts for 14 days. During this period the pointing is calibrated, and final 

observing parameters for each observational band are determined. Science Observations last 75 days, and involve a 

series of observations of both stars, in all five bands of the camera. One complete observation cycle alternates viewing of 

the two target stars while stepping through each of the bands incrementally twice. This ensures for each cycle, each 

target star is observed once in each band. Figure 

14. shows this “Quarter in the Life”. 

There are four observation cycles per quarter. 

Periodic Health and Safety (H/S) contacts 

lasting 6-8 hours are conducted every 2-4 days, 

and they utilize the X-band command/telemetry 

link via the low-gain antenna.  During these 

contacts, real-time telemetry is acquired, and 

samples of the primary science images are 

downloaded to evaluate the health of the 

instrument. Other spacecraft housekeeping 

 
Figure 14: ACESat “Quarter-in-the-Life” 

 
Figure 15:  Schematic of the data and post-processing. 



 
 

 

activities may be performed at the discretion of the Operations Team. Science observations continue through the H/S 

contacts.   

At the conclusion of the Science Observation period, there is a two-day Science Data Downlink period. Figure 16 shows 

a timeline of Downlink period’s activities. During the Downlink period, the spacecraft is maneuvered to point the high 

gain antenna towards earth, to allow high data rate Ka-band transmissions to occur.  

The following data is downlinked: Primary Science images, from the primary band; Stored Engineering data; Secondary 

Science images, from the other four bands; Retransmission of the data that not received on the ground to ensure 

completeness of the science data. Following the Science Data downlink, any required engineering maintenance activities 

are performed, including the desaturation of the reaction wheels. Next, preparations for the upcoming quarter are made, 

including uploading the command sequences for the quarter, and rolling the spacecraft. The Downlink period concludes 

with time for the spacecraft to achieve thermal equilibrium in its new attitude.  

5.1 Data Sufficiency 

The raw data from the mission will consist of an almost continuous sequence of 20-minute frames (co-added before 

download) spanning over 2 years, or 10,000 frames per year per star (2,000 per band per year per star) (see Figure 15). 

Each individual frame will have a raw contrast of no more than 

our raw contrast requirement of 1e-8 from stellar speckle 

residual after MSWC (see Fig. 16). The speckle photon noise 

per 20-minute frame is 1e-9, which averages out to 2e-11 in a 

2-day average, along with any other random noise at 1e-9 or 

lower contrast, uncorrelated between frames. Although these 2-

day stacks will have photon noise well below Earth-like planet 

contrast, they will still have a bias (which will be different in 

each 2-day stack) that is up to 100 times brighter than the 

planet itself. Post-processing is necessary to remove this noise. 

5.5 Post-Processing 

There are three main types of residual noise on the image 

sequence: known speckle field coherent with the star; known 

speckle field incoherent with the star; and random variations. 

The first of these are systematic and the last one is random. We 

now cover each one in turn. ACESat post-processing makes use 

of a combination of techniques and is described in detail in [17]. The main principle that differentiates ACESat post-

processing from other missions is that it has the benefit of tens of thousdands of images spanning 2 years around the 

same star system. A special algorithm was developed called "Orbital Difference Imaging", or ODI [17] which leverage 

this unique feature of ACESat and enables a much greater post-processing factor than is available on missions that only 

have one or a few visits on a given target. A complete ODI reduction combines optimized PSF subtraction KLIP [18] 

and temporal low-pass filtering, along with spatial filtering and other standard image processing tools. 

6. CONCLUSIONS 

We have designed and instrument, spacecraft and mission to be able to image an earth-like planet in the HZ of the 

system αCen A&B. Based on our current performance CBE the mission will be capable of detecting planets equal or 

larger than 0.5R⊕ assuming a typical albedo of 0.3. The discovery zone includes the inner HZ of both star that 

corresponds to 0.4” for αCen B out to the stability of both stars that corresponds to 2.07” for αCen A. The mission will 

be capable of achieving its science goal with 90% confidence and it is equipped with expendables to continue an 

extended science mission. The mission would fit on the cost cap and maturity of a NASA SMEX class and it should last 

two years with a possible extension of 1 more year to achieve the enhance science cases. 

 
Figure 16:  The contrast progression from acquisition to 

wavefront correction and post processing. 
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