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We present an overview of the detector for the upcoming Faint Intergalactic Red-shifted Emission Balloon 
(FIREBall-2) experiment, with a particular focus on the development of device-integrated optical coatings and 
detector quantum efficiency (QE). FIREBall-2 is designed to measure emission from the strong resonance lines of 
HI, OVI, and CIV, all red-shifted to 195-225 nm window; its detector is a delta-doped electron multiplying charge-
coupled device (EM-CCD). Delta-doped arrays, invented at JPL, achieve 100% internal QE from the UV through 
the visible. External losses due to reflection (~70% in some UV regions) can be mitigated with antireflection 
coatings (ARCs). Using atomic layer deposition (ALD), thin-film optical filters are incorporated with existing 
detector technologies. ALD offers nanometer-scale control over film thickness and interface quality, allowing for 
precision growth of multilayer films. Several AR coatings, including single and multi-layer designs, were tested for 
FIREBall-2. QE measurements match modeled transmittance behavior remarkably well, showing improved 
performance in the target wavelength range. Also under development are ALD coatings to enhance QE for a variety 
of spectral regions throughout the UV (90-320 nm) and visible (320-1000 nm) range both for space-based imaging 
and spectroscopy as well as for ground-based telescopes. 
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1. FIREBALL-2 

The Faint Intergalactic Red Shifted Emission Balloon (FIREBall-2) is a balloon-borne UV spectrograph funded 
jointly by NASA and CNES. Briefly, FIREBall-2 is designed to observe emission from the circumgalactic medium 
(CGM), the diffuse gas around galaxies. The primary targets include line emission from HI (Lyman- , 121.6 nm) at 
a redshift of z=0.7; OVI (103.3 nm) at z=1.0; and CIV (154.9 nm) at z=0.3. The instrument is optimized for 
narrowband observations spanning the stratospheric window (200-210 nm) centered at 205 nm. FIREBall-2 is a 
follow on to FIREBall-1, which was launched on two separate occasions in 2007 and 2009.1–4 FIREBall-1 was a 
technical and engineering success, but elucidated the need for lower detection limits and FIREBall-2, resulting in 
changes to the spectrograph design and the detector. The focus of this manuscript is on the FIREBall-2 detector, 
specifically development of Electron Multiplying CCDs (EMCCDs) with unprecedented quantum efficiency (QE) 
within the FIREBall-2 observation band. Details of the spectrograph design and detector noise performance are 
provided elsewhere, including within these Proceedings.5,6 

2. FIREBALL-2 DETECTOR 

The FIREBall-2 detector development is a collaborative effort shared between the Jet Propulsion Laboratory 
(JPL), the California Institute of Technology, and Columbia University. The detector is based on e2v’s CCD201-20, 
an electron multiplying charge-coupled device (EMCCD). EMCCDs are conventional CCDs in which one of the 
register phases is replaced with a high voltage (40-50 V) gain register that multiplies charge prior to readout (Figure 
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1).7 Depending on the applied voltage, EMCCDs can amplify electron signals by several thousand times, effectively 
eliminating read noise by allowing the device to operate as a photon counter.8,9 EMCCDs are well suited for the 
FIREBall-2 experiment, which will map faint targets. 

 

Figure 1. Schematic of an EMCCD showing a conventional 
CCD architecture with an added multiplication register to 
amplify signal. 

2.1 Two-dimensional doping 

Fully fabricated CCD201-20 detector wafers (e2v) were modified for back illumination and to achieve 
ultraviolet sensitivity. Our post-fabrication process flow has been described elsewhere.10 Briefly, device wafers are 
bonded front-side down to a handle wafer (Novati Technologies, Inc.); this handle wafer serves to protect the VLSI 
fabricated circuitry and pixel structure, and also provides support for the device wafer during and after subsequent 
thinning steps. The device wafers are then thinned to remove the bulk of the detector substrate by grinding, chemical 
mechanical polishing, and chemical etching. With these processes, device wafers are thinned from ~800 µm to ~5-
10 µm, and have a smooth mirror finish. Additional surface preparation steps are employed to prepare the wafers for 
epitaxial growth. The thinned device wafer is then passivated by JPL’s delta doping process. A highly doped silicon 
layer is deposited within a nanometer of the substrate surface using low temperature molecular beam epitaxy 
(MBE).11,12 In recent years we have extended our work to “superlattice” doping, in which multiple delta layers are 
deposited within the space of only a few nanometers.13,14 

JPL’s backside thinning and 2D doping processes result in 100% internal quantum efficiency (QE) giving 
reflection-limited response; detector response can be further improved with antireflection coatings (ARCs). 

2.2 Antireflection coatings 

ARCs were designed to minimize reflectance (maximize transmittance) across the entire FIREBall-2 band (195-
215 nm) with a local minimum at ~205 nm. Several single and multiple layer ARC designs were considered; ARC 
performance was modeled using TFCalc® (Software Spectra, Inc.) as described elsewhere.15–17 The finalized ARC 
design candidates for FIREBall-2 include one, three and five layer coatings, as shown in Table 1. Calculated 
performance shows that increasing the number of layers within the ARC increases the peak transmittance while also 
resulting in a narrower peak width, defined here as wavelength range over which transmission 50%. 

Table 1. Details of the ARC coating designs for the FIREBall-2 detector. 
 Coating A Coating B Coating C 

Number of Layers  1 3 5 
T at 205 nm 64% 74% 81% 
Peak Width* 76 nm 40 nm 22 nm 

*Defined as wavelength range for which T>50%. 

Test coatings were prepared on 1-inch diameter n-type low-resistivity silicon <100> substrates (Virginia 
Semiconductor, Inc.) using atomic layer deposition (ALD), a thin film growth technique similar to chemical vapor 
deposition. ALD films are grown a single atomic layer at a time via a chemical reaction at the substrate surface. The 
precursors are introduced to the substrate in two separate steps separated by purges with inert gas (argon, nitrogen, 
etc.), as shown in Figure 2. This growth technique allows for nanometer scale control of film stoichiometry 
thickness—typical growth rates are ~1 Å/cycle. For this work, we used a TFS200 ALD system (Beneq) housed in 
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Figure 6. The calcualted transmittance (100-R, measured) of several test coatings is shown against modeled performance 
(bold solid line) for Coating C. The coatings vary only in the thickness of the two SiO2 layers within the ARC. The data 
shows the ARC performance when the layer thicknesses match the design (squares); when one SiO2 layer is reduced by 3 
nm (circles), and when both SiO2 layers are reduced by 3 nm (triangles). The reflection limited plot for bare silicon is 
shown for comparision (grey line). 

2.3 Detector testing 

With test ARC performance verified on bare substrates, each of the ARC designs was deposited on live EMCCD 
detectors (CCD 201-20, e2v). Packaged detectors with Coatings A, B and C are shown in Figure 7. The color of 
each detector varies as a result of the ARC performance at visible wavelengths, which will not be discussed here. 

 

Figure 7. Packaged CCD 201 detectors with Coatings A, B and C applied by ALD. The apparent color of each device is 
dictated by the ARC behavior at visible wavelengths. 

Detector performance of the device with Coating B was evaluated at JPL using a 1-meter Acton monochromator 
fitted with a both a deuterium lamp and a tungsten halogen lamp, as well as several band pass and long pass filters to 
reduce wavelength contamination. Details of the characterization set up have previously been described in detail.25 
Detector perfomance matches modeled perfomance quite well in terms of shape and peak position, with the quantum 
yield (QY) corrected peak QE=57% centered at 210 nm and a peak width of ~20 nm. QY is calculated as photon 
energy divided by average electron-hole pair energy, where the latter is measured by Kuschnerus et al.26 The 
performance of detectors with Coatings A and C will be described in future publications. 

0 

20 

40 

60 

80 

100 

185 195 205 215 225 235 245 

Tr
an

sm
it

ta
n

ce
 (

10
0-

R
, %

) 

Wavelength (nm) 

A B C 

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/04/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Figure 8. Measured QE (solid diamonds) for a 2D-doped EMCCD with ARC Coating B (three layer design) applied by 
ALD. The measured data agree well the reflectance data (shown as 100-R) for Coating B (solid line). Also shown is the 
QY corrected data (open diamonds). 

3. FUTURE WORK

The work described herein emphasizes that it is possible to achieve unprecedented QE in the UV with 
superlattice-doped, AR-coated EMCCDs. The ARC for FIREBall-2 detector was optimized to operate over a 
relatively narrow wavelength range, restricted by the stratospheric window. However, the 2D doping process can be 
combined with a variety of ARC designs, enabling detector performance optimization for virtually any wavelength. 
For future work we will demonstrate EMCCD detectors with >50% QE throughout the UV (100-340 nm). We also 
will explore ARC patterning techniques so that multiple ARCs can be deposited on a single detector with; thus 
enabling high performance UV spectroscopy. 
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