A precursor mission to high contrast imaging balloon system

Olivier Côté, Guillaume Allain, Marie-Pier Lord, Samy Ouahbi, Mireille Ouellet, Deven Patel, Simon Thibault, Cédric Vallée, Univ. Laval (Canada); Ruslan Belikov, Eduardo A. Bendek, NASA Ames Research Ctr. (United States); Célia Blain, Collin Bradley, Univ. of Victoria (Canada); David Doelman, Univ. Leiden (Netherlands); Olivier Daigle, Nüvü Caméras Inc. (Canada); René Doyon, Univ. de Montréal (Canada); Frédéric Grandmont, ABB Inc. (Canada); Michael Helmbrecht, Iris AO, Inc. (United States); Matthew A. Kenworthy, Leiden Univ. (Netherlands); David Lafrenière, Univ. de Montréal (Canada); Frank Marchis, SETI Institute (United States); Christian Marois, NRC-Dominion Astrophysical Observatory (Canada); Steeve Montminy, Canadian Space Agency (Canada); Frans Snik, Leiden Univ. (Netherlands); Gautam Vasisht, NASA Ames Research Ctr. (United States); Jean-Pierre Véran, NRC - Herzberg Astronomy & Astrophysics (Canada); Philippe Vincent, Canadian Space Agency (Canada)

ABSTRACT

The advent of space-based astronomical observations has transformed the fields of astronomy. However, all the advances of space-based observations come at a significant cost. A far cheaper alternative is to fly instrumentation aboard sub-orbital balloons which can be achieve at a fraction of the cost. HiCIBaS: High-Contrast Imaging Balloon System provides a platform to develop space-like imaging techniques to find planets. A high-altitude balloon can carry a telescope payload to a near-space environment, where high-contrast imaging experiments are possible.

This poster will be presented during the:

SPIE Astronomical Telescopes + Instrumentation 2018
Ground-based and Airborne Instrumentation for Astronomy VII, Posters: High-contrast imaging
Monday, June 11th, 2018
Paper Number: 10702-153; Time 5:30 PM – 7:30 PM