Improved Single-molecule Imaging Based On Photon Counting With An EMCCD Camera

Abbas Padeganeh¹, Étienne Lareau², Olivier Daigle², Anne-Marie Ladouceur¹, Paul Maddox¹,³

¹Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada,
²Nüvu Caméras Inc., Montreal, QC, Canada,
³Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.

Introduction

New breakthroughs in digital imaging have historically opened opportunities to scientists in bio-medical research. One important landmark of the last decade has been the development of the electron-multiplying charge coupled device (EMCCD), an imaging detector that uses an avalanche phenomenon to amplify the weak photo-electron signals. EMCCDs are well suited for ultralow light applications in that a single photo-electron can be amplified sufficiently to exceed the noise level.

We present a demonstration of its applicability in a total internal reflection fluorescence microscopy (TIRFM) assay to visualize single biomolecules. In molecular biology, it is well established that most proteins exert their biological roles in complex with other proteins. Thus, detecting individual components and the structure of these complexes is essential to understanding the mechanism of biological events. To this aim, we employ TIRFM imaging in photon counting mode for visualization of single centromeric nucleosomes, containing a histone variant known as CENP-A.

We show that this technique is well suited to TIRFM and that it is capable of detecting single fluorescently labelled CENP-A in the nucleosome with an enhanced signal to noise ratio. The desired and improved properties of the assay such as high sensitivity and photon counting shall pave the way for comprehensive studies of single molecules in this and other biological contexts.

Methods

TIRF microscope

Nüvu Caméras EM N2
EMCCD camera

Photon counting principles

In EMCCD cameras, the Excess Noise Factor (ENF) usually has the effect of halving the Quantum Efficiency. However, Photon Counting (PC) allows to get rid of it. To attain a plus value over the analog mode (AM), extremely low clock-induced charge (CIC) noise and a high EM gain are necessary.

<table>
<thead>
<tr>
<th>Detection Probability in PC</th>
<th>Efficiency PC - AM</th>
<th>Efficiency PC - AM (gain 5x000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G = 5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The left and center columns show that with PC, the improved SNR allows for better imaging of the finer details of the target. In the right column, the red curves represent the same cross section obtained from a normalized acquisition with a longer exposure time. It is used as a reference to compare the blue curves.

For ultra low light applications, PC provides better detection accuracy and faster acquisitions.

Results

Our TIRFM assay can detect double vs. single bleaching events

Conclusions

- Our TIRFM assay is capable of detecting single fluorescently-labeled biomolecules
- Using an EMCCD camera in photon-counting mode enables visualization of single molecules and photobleaching behaviour at a much lower laser power compared with analog mode and thus may provide a better time resolution
- There is a mixture of two different CENP-A nucleosomes in the mammalian system
- Cell-cycle dependent changes appear to occur in the structure of CENP-A nucleosomes

Acknowledgements

We would like to thank all members of the Maddox labs for their support and useful contributions to this work. Special thanks to Joel Ryan for his assistance. This work was supported by NSERC, CIHR, the Canadian Cancer Research Society and Nüvu Caméras.